Cuando se trata con sistemas estructurales reales es necesario, en general, considerar varios grados de libertad, cada uno correspondiente a una coordenada independiente. En general podría pensarse que una estructura real tiene infinitos grados de libertad, sin embargo es posible reducir su número a uno finito considerando el hecho que los desplazamientos intermedios de los elementos pueden ser expresados en función de los desplazamientos de los nudos extremos.
El número de grados de libertad debería ser igual al número de componentes de desplazamiento necesario para definir adecuadamente la deformada del sistema bajo el tipo de excitación de interés, y como consecuencia poder determinar las fuerzas internas de manera suficientemente aproximada.
En el caso de los edificios sometidos a cargas sísmicas, la excitación principal son aceleraciones horizontales (y una vertical que es poco importante en general o que en caso de serlo puede ser tratada independientemente). Esto se traduce en fuerzas de inercia horizontales que imprimen a la estructura una deformación lateral y cuyos grados de libertad independientes importantes son los desplazamientos horizontales de los nudos.
Existen otras consideraciones aplicables a este caso, como el hecho que la masa está principalmente concentrada en el nivel de cada entrepiso y por consiguiente las fuerzas de inercia son fuerzas horizontales aplicadas al nivel de cada entrepiso. Esto sugiere que los grados de libertad dinámicos independientes son aquellos asociados con la dirección de las fuerzas. Lo cierto es que un edificio sometido a la acción de un sismo es un sistema de varios grados de libertad por lo que es importante analizar teóricamente el tratamiento de dichos sistemas.
En las secciones iniciales del presente capítulo se fundamentará, basados en los conceptos básicos del análisis dinámico de edificios, las simplificaciones hechas a ciertos sistemas. Dichas simplificaciones son aceptadas por muchos reglamentos modernos de construcción cuando hacen uso de métodos dinámicos de diseño. En la Secc. 8.2 se verá la diferencia entre un modelo de acoplamiento cercano y lejano, usando para esto un pórtico de 3 niveles. Después en la Secc. 8.3 y 8.4 con la finalidad de que los conceptos fundamentales y procedimientos numéricos sean asimilados con facilidad haremos uso de una estructura sencilla ( pórtico de 2 niveles mostrado en la Fig. 8.3 ). Ello significa que para sistemas más complejos los conceptos también son válidos, tal como se verá en la Secc 8.4., con la única diferencia de que en la mayoría de los casos se tendrá que recurrir a programas de computo avanzados para realizar el análisis, sin embargo, la última palabra la tiene el Ingeniero a cargo del análisis y no la computadora que no es mas que una herramienta [ Ref. 11 ]. Finalmente, en la Secc. 8.5 se tocará el tema acerca de los sistemas continuos que son los que en realidad nos permiten representar a los sistemas estructurales con su masa y rigidez a lo largo de los elementos que los componen.
No hay comentarios.:
Publicar un comentario