sábado, 9 de febrero de 2019

RESISTENCIA DE MATERIALES - Ing. Genaro Delgado Contreras


Todo estudiante de Ingeniería se pregunta cuando inicia sus estudios universitarios; ¿a qué se dedica un ingeniero?, pregunta interesante, ya que de la respuesta; el joven sabrá lo que hará el resto de su vida.

Los libros de ingeniería dicen que todo ingeniero diseña, construye máquinas y edificios; y por este punto iniciaremos nuestra exposición, para entender el campo de la Mecánica y Resistencia de Materiales.

La primera pregunta que surge es ¿qué es diseñar?  Diseñar es dimensionar, dar forma y determinar el tipo de material, y los tipos de apoyos de lo que queremos construir posteriormente.

La otra pregunta inmediata que surge es ¿Qué es una máquina? y ¿Qué es un edificio?, al respecto diremos, que toda máquina o edificio es una combinación de elementos unidos entre sí, para:

l.- SOPORTAR CARGAS
2.-TENER CAPACIDAD DE DEFORMARSE Y RECUPERAR SU FORMA.
3.-MANTENER SU POSICION ORIGINAL.

Es decir toda máquina y edificio debe tener RESISTENCIA, es decir capacidad de soportar cargas, además debe tener RIGIDEZ, capacidad de deformarse y recuperar su forma, y finalmente ESTABILIDAD, es decir capacidad de mantener su posición original.

Finalmente podemos concluir que toda máquina y edificio deben cumplir tres principios fundamentales de la Mecánica de Materiales, que son: RESISTENCIA, RIGIDEZ Y ESTABILIDAD.

Todo el diseño de máquinas y edificios se basa en la Mecánica y Resistencia de Materiales. Otra pregunta que se hará el estudiante es ¿cuál es la diferencia entre la Mecánica y Resistencia de Materiales?

Al respecto diremos que la Mecánica,  analiza las fuerzas exteriores que actúan sobre una estructura; y la considera a ésta como un cuerpo rígido; capaz de soportar todas estas cargas, sin deformarse.

En cambio a la Resistencia de Materiales le interesa saber si la estructura tendrá la capacidad para soportar dichas cargas; teniendo que analizarse en este caso las fuerzas internas del cuerpo y su relación con las fuerzas exteriores que actúan en él.

La Resistencia de Materiales estudia y establece las relaciones entre las cargas exteriores aplicadas y sus efectos en el interior de los sólidos. No supone que los sólidos son rígidos, como en la Mecánica; sino que las deformaciones por pequeñas que sean tienen gran interés en nuestro análisis.

Otra pregunta que surge de la exposición es si una máquina o estructura soportan cargas, ¿qué es una carga y de que tipo son? A lo largo de la exposición iremos analizando los diferentes tipos de cargas que  existen  y  sus  efectos  que ocasionan en las máquinas y  edificios, pero a manera  de  introducción  diremos  que las cargas son fuerzas que actúan en   un  cuerpo y que cuando se les multiplica por su brazo de palanca se generan momentos.

Toda máquina o edificio estará sometida a fuerzas y momentos, y de acuerdo a como actúen en los elementos de las máquinas o estructuras generarán los siguientes efectos: AXIALES, CORTANTES, FLEXIONANTES y DE TORSIÓN.

Los efectos axiales y de corte son generados por fuerzas, los flexionantes y de torsión son generados por pares.

A continuación pasaremos a analizar los cuatro efectos que todo edifico o máquina tendrán, al ser sometidos a cargas o pares, según sea el caso.

EFECTOS AXIALES
Los efectos axiales aparecen cuando las fuerzas actúan en el centro de gravedad de la sección recta del elemento estructural y se desplazan a lo largo de su eje de simetría. Los efectos axiales pueden ser de tracción o de compresión. Los primeros generan alargamiento y los segundos acortamiento en los elementos.

EFECTOS DE CORTE
Los efectos de corte aparecen cuando las fuerzas actúan en la dirección de la sección recta del elemento. Son los componentes de la resistencia total al deslizamiento de la porción del elemento a un lado de la sección de exploración respecto de la otra porción.

EFECTOS DE FLEXION
Los efectos flexionantes aparecen cuando se aplican pares en el plano donde se encuentra el eje de simetría del elemento estructural. Dichos pares tratarán de curvar o flexar el elemento en el plano donde están actuando los pares. Este efecto genera tensiones normales de tracción y de compresión en las fibras que se encuentran a un lado y otro del eje neutro del elemento, asimismo también se generan
tensiones de corte debido a la flexión.

EFECTOS DE TORSION
Este efecto surge cuando actúan, dos pares iguales en magnitud, en la misma dirección pero en sentido contrario, perpendicularmente al eje del elemento estructural en análisis. Mas adelante veremos que estos efectos se pueden combinar entre si generando efectos combinados. 





No hay comentarios.:

Publicar un comentario

Entrada destacada

NORMA TECNICA IS 010 INSTALACIONES SANITARIAS PARA EDIFICACIONES

Esta Norma contiene los requisitos mínimos para el diseño de las instalaciones sanitarias para edificaciones en general. Para los...